補充問題3

放射線と2接線で囲まれる図形の面積

CHECK]

CHECK

CHECK 3

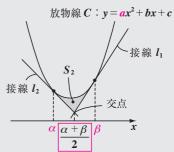
放物線 $C: y = f(x) = \frac{1}{2} x^2 - 2x + 3$ に対して、点 $\left(\frac{5}{2}, 0\right)$ から 2 本の接線 l_1 と l_2 が引ける。(ただし、 l_1 と l_2 の傾きを順に m_1 、 m_2 とおくと、 $m_1 > m_2$ である。)

- (1) 2 つの接線 l_1 と l_2 の方程式を求めよ。
- (2) 放物線 C と 2 つの接線 l_1 と l_2 とで囲まれる図形の面積 S を求めよ。

Baba のレクチャー

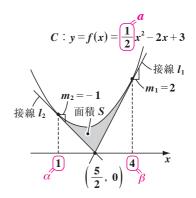
放物線 $C: y = ax^2 + bx + c$ とその 2 つの接線 l_1 , l_2 とで囲まれる部分の面積 S は,放物線と 2 接線の接点の x 座標 α , β (α < β) と, x^2 の係数 a の 3 つだけで,次の公式により,簡単に求めることができるんだね。これも覚えておこう!

$$S = \frac{|a|}{12}(\beta - \alpha)^3 \cdots (*)$$



解答&解説

(1) 放物線 $C: y = f(x) = \frac{1}{2}x^2 - 2x + 3$ $= \frac{1}{2}(x^2 - 4x + 4) + 3 - 2$ $= \frac{1}{2}(x - 2)^2 + 1 \cdots 1 \ge i \le 0$ 点 $\left(\frac{5}{2}, 0\right)$ を通り、傾き m の直線を l と $i \le 0$ 、 $i \le 0$ と $i \le 0$ を通り、 質き $i \le 0$ を $i \le 0$ で $i \le 0$ を $i \le 0$ で $i \le 0$ で



 $x^2 - 4x + 6 = 2mx - 5m$

 $x^2-2(m+2)x+5m+6=0$ ……③ となる。ここで、放物線 C と直線 I が接するとき、③は重解をもつ。よって、③の判別式を D とおくと、

$$\frac{D}{4} = \underbrace{(m+2)^2 - (5m+6)}_{m} = m^2 - m - 2 = \underbrace{(m+1)(m-2) = 0}_{m} \ \sharp \ \emptyset \ ,$$

 $m_1 = 2$, $m_2 = -1$ となり, 2 つの接線 l_1 と l_2 の傾きが求められた。

(i) $m_1 = 2$ を②の m に代入すると、接線 l_1 の方程式は、 $y = 2\left(x - \frac{5}{2}\right) = 2x - 5$ であり、 ……(答)

(ii)
$$m_2 = -1$$
 を②の m に代入すると、接線 l_2 の方程式は、 $y = (-1) \cdot \left(x - \frac{5}{2}\right) = -x + \frac{5}{2}$ である。(答)

(2) $m_1 = 2 \$ と $m_2 = -1$ をそれぞれ③に代入して、接点の x 座標を求めると、

(i)
$$m_1 = 2$$
 $\mathcal{O} \succeq \frac{1}{2}$, $\frac{x^2 - 8x + 16 = 0}{t}$ $(x - 4)^2 = 0$ $(x^2 - 2 \cdot (2 + 2)x + 5 \cdot 2 + 6 = 0 \quad (3) \ \text{\sharp (3) $}$

 $\therefore x = 4(=\beta)$ であり、また、

以上より、放物線 C と 2 接線 l_1 と l_2 とで囲まれる図形の面積 S は、

$$S = \int_{1}^{\frac{5}{2}} \left\{ f(x) - \left(-x + \frac{5}{2} \right) \right\} dx + \int_{\frac{5}{2}}^{4} \left\{ f(x) - (2x - 5) \right\} dx$$

$$= \int_{1}^{\frac{5}{2}} \left\{ \frac{1}{2} x^{2} - 2x + 3 - \left(-x + \frac{5}{2} \right) \right\} dx + \int_{\frac{5}{2}}^{4} \left\{ \frac{1}{2} x^{2} - 2x + 3 - (2x - 5) \right\} dx$$

$$= \frac{\left| \frac{1}{2} \right|}{12} (4 - 1)^{3} = \frac{3^{3}}{24} = \frac{9}{8} \quad \text{である} \quad \text{(答)}$$
実際には、積分計算をしなくても、 $a = \frac{1}{2}$ 、 $\beta = 4$ 、 $\alpha = 1$ より、面積 S は、面積公式: $S = \frac{|a|}{12} (\beta - \alpha)^{3} \cdots (*)$ から求めればいいんだね。